Abstract

Purpose

The presence of white matter hyperintensities (WMH) on MRI imaging confers an increased risk of stroke, dementia, and death. Corneal confocal microscopy (CCM) can detect nerve injury non-invasively and may be a useful surrogate marker for WMH. The objective is to determine whether corneal nerve pathology identified using CCM is associated with the presence of WMH in patients with acute ischemic stroke.

Methods

This is a cross-sectional study where 196 consecutive individuals with acute ischemic stroke were enrolled and underwent neurological examination, MRI brain imaging and CCM. Participants underwent blinded quantification of WMH and corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD) and corneal nerve fiber length (CNFL).

Results

The prevalence of hypertension \[P = .013 \] was significantly higher and CNFD \[P = .031 \] was significantly lower in patients with WMH compared to those without WMH. CNFD and CNFL were significantly lower in patients with DM without WMH \[P = .008, P = .019 \] and in patients with DM and WMH \[P = .042, P = .024 \] compared to patients without DM or WMH, respectively. In a multivariate model, a 1-unit decrease in the CNFD increased the risk of WMH by 6%, after adjusting for age, DM, gender, dyslipidemia, metabolic syndrome, smoking, and HbA1c. DM was
associated with a decrease in all CCM parameters but was not a significant independent factor associated with WMH.

Conclusions

CCM demonstrates corneal nerve pathology, which is associated with the presence of WMH in participants with acute ischemic stroke. CCM may be a useful surrogate imaging marker for the presence and severity of WMHs.

Key Words

Corneal confocal microscopy • white matter hyperintensities • ischemic stroke • MRI

References

1. Gorelick P.B. • Scuteri A. • Black S.E. • et al.

Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association.

Stroke. 2011; 42: 2672-2713

View in Article

Google Scholar

2. Wardlaw J.M. • Smith C. • Dichgans M.

Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging.

View in Article

Google Scholar

3. Pantoni L.

Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.

Lancet Neurol. 2010; 9: 689-701

View in Article

Google Scholar
4. Debette S. • Markus H.S.
The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis.
BMJ. 2010; 26: c3666

5. Smith E.E. • Saposnik G. • Biessels G.J. • et al.
Stroke. 2017; 48: e44-e71

6. Wardlaw J.M. • Smith E.E. • Biessels G.J. • et al.
Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.

7. Gouw A.A. • Seewann A. • van der Flier W.M. • et al.
Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations.
J Neurol Neurosurg Psychiatry. 2011; 82: 126-135

8. Gouw A.A. • van der Flier W.M. • van Straaten E.C.W. • et al.
Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression.
9. Mäntylä R. • Erkinjuntti T. • Salonen O. • et al.
Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort.
Stroke. 1997; 28: 1614-1623

10. Prins N.D. • Van Straaten E.C. • Van Dijk E.J. • et al.
Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics.
Neurology. 2004; 62: 1533-1539

11. Caligiuri M.E. • Perrotta P. • Augimeri A. • et al.
Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review.
Neuroinformatics. 2015; 13: 261-276

12. De Guio F. • Jouvent E. • Biessels G.J. • et al.
Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease.

13. Malik R.A. • Kallinikos P. • Abbott C.A. • et al.
Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients.
Small fiber neuropathy in Parkinson's disease: a clinical, pathological and corneal confocal microscopy study.
Parkinsonism Relat Disord. 2015; 21: 1454-1460

View in Article
Google Scholar

15. Mikolajczak J. • Zimmermann H. • Kheirkhah A. • et al.
Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density.
Mult Scler Houndmills Basingstoke Engl. 2017; 23: 1847-1853

View in Article
Google Scholar

16. Petropoulos I.N. • Kamran S. • Li Y. • et al.
Corneal confocal microscopy: an imaging endpoint for axonal degeneration in multiple sclerosis.
Invest Ophthalmol Vis Sci. 2017; 58: 3677-3681

View in Article
Google Scholar

17. Bitirgen G. • Akpinar Z. • Malik R.A. • et al.
Use of corneal confocal microscopy to detect corneal nerve loss and increased dendritic cells in patients with multiple sclerosis.
JAMA Ophthalmol. 2017; 135: 777-782

View in Article
Google Scholar
Automated white matter hyperintensity detection in multiple sclerosis using 3D T2 FLAIR.

J Biomed Imaging. 2014; **2014**239123

View in Article
Google Scholar

19. Khan A. • Akhtar N. • Kamran S. • et al.
Corneal confocal microscopy detects corneal nerve damage in patients admitted with acute ischemic stroke.

Stroke. 2017; **48**: 3012-3018

View in Article
Google Scholar

20. Khan A. • Kamran S. • Akhtar N. • et al.
Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke.

Sci Rep. 2018; **8**: 17333

View in Article
Google Scholar

21. American Diabetes Association

Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes 2018.

Diabetes Care. 2018; **41**: S13-S27

View in Article
Google Scholar

22. Alberti K.G.M.M. • Eckel R.H. • Grundy S.M. • et al.

Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity.

Circulation. 2009; **120**: 1640-1645

View in Article

23. Rosendorff C. • Lackland D.T. • Allison M. • et al.
Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension.
J Am Coll Cardiol. 2015; 65: 1998-2038

24. Fazekas F. • Chawluk J.B. • Alavi A. • et al.
MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging.

25. Dabbah M.A. • Graham J. • Petropoulos I.N. • et al.
Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging.
Med Image Anal. 2011; 15: 738-747

26. Kalteniece A. • Ferdousi M. • Adam S. • et al.
Corneal confocal microscopy is a rapid reproducible ophthalmic technique for quantifying corneal nerve abnormalities.
PloS One. 2017; 12e0183040

27. Petropoulos I.N. • Manzoor T. • Morgan P. • et al.
Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology.
28. Petropoulos I.N. • Alam U. • Fadavi H. • et al.
 Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy.
 Invest Ophthalmol Vis Sci. 2014; **55**: 2071-2078

29. Brines M. • Culver D.A. • Ferdousi M. • et al.
 Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy.
 Sci Rep. 2018; **8**: 4734

30. Petropoulos I.N. • Alam U. • Fadavi H. • et al.
 Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy.
 Diabetes Care. 2013; **36**: 3646-3651

31. Tavakoli M. • Mitu-Pretorian M. • Petropoulos I.N. • et al.
 Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation.
 Diabetes. 2013; **62**: 254-260

32. Joutel A. • Chabriat H.
 Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms.
33. Auriel E. • Edlow B.L. • Reijmer Y.D. • et al.
Microinfarct disruption of white matter structure: a longitudinal diffusion tensor analysis.
Neurology. 2014; 83: 182-188

34. Verdelho A. • Madureira S. • Moleiro C. • et al.
White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study.
Neurology. 2010; 75: 160-167

35. Wardlaw J.M. • Chappell F.M. • Valdés Hernández M.D.C. • et al.
White matter hyperintensity reduction and outcomes after minor stroke.
Neurology. 2017; 89: 1003-1010

36. García-Lorenzo D. • Francis S. • Narayanan S. • et al.
Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging.
Med Image Anal. 2013; 17: 1-18
3D FLAIR: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis.

38. Sicotte N.L. • Voskuhl R.R. • Bouvier S. • et al.
Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla.
Invest Radiol. 2003; 38: 423-427

39. Dadar M. • Pascoal T.A. • Manitsirikul S. • et al.
Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimer's disease.
IEEE Trans Med Imaging. 2017; 36: 1758-1768

40. Misra S.L. • Kersten H.M. • Roxburgh R.H. • et al.
Corneal nerve microstructure in Parkinson's disease.

41. Podgorny P.J. • Suchoworsky O. • Romanchuk K.G. • et al.
Evidence for small fiber neuropathy in early Parkinson's disease.
Parkinsonism Relat Disord. 2016; 28: 94-99

...
Early corneal innervation and trigeminal alterations in parkinson disease: a pilot study.
Cornea. 2018; 37: 448-454

View in Article
Google Scholar

43. Pagovich O.E. • Vo M.L. • Zhao Z. • et al.
Corneal confocal microscopy: neurologic disease biomarker in Friedreich's ataxia.
Annals Neurol. 2018; 84: 893-904

View in Article
Google Scholar

44. Ferrari G. • Grisan E. • Scarpa F. • et al.
Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis.
Front Aging Neurosci. 2014; 6: 278

View in Article
Google Scholar

Article Info

Publication History

Published online: January 05, 2020
Accepted: November 18, 2019
Received in revised form: October 14, 2019
Received: September 11, 2019

Publication stage

In Press Corrected Proof

Footnotes

Funding: No funding was received for this study; neither did any of the authors receive external support.
Magnetic Resonance Imaging White Matter Hyperintensity as a Predictor of Stroke Recurrence in Patients with Embolic Stroke of Undetermined Source

Journal of Stroke and Cerebrovascular Diseases, Vol. 27, Issue 12

Cerebral White Matter Hypoperfusion Increases with Small-Vessel Disease Burden. Data From the Third International Stroke Trial

Journal of Stroke and Cerebrovascular Diseases, Vol. 26, Issue 7

Pre-existing White Matter Hyperintensity Lesion Burden and Diagnostic Certainty of Transient Ischemic Attack

Journal of Stroke and Cerebrovascular Diseases, Vol. 28, Issue 4

Is There Equipoise Regarding the Optimal Medical Treatment of Patients with Asymptomatic White Matter Hyperintensities?

Journal of Stroke and Cerebrovascular Diseases, Vol. 28, Issue 11

Severity of White Matter Lesions Correlates with Subcortical Diffusion-Weighted Imaging Abnormalities and Predicts Stroke Risk

Journal of Stroke and Cerebrovascular Diseases, Vol. 26, Issue 12